首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   972篇
  免费   41篇
  2021年   8篇
  2020年   6篇
  2018年   8篇
  2016年   12篇
  2015年   23篇
  2014年   25篇
  2013年   52篇
  2012年   42篇
  2011年   38篇
  2010年   31篇
  2009年   32篇
  2008年   41篇
  2007年   49篇
  2006年   38篇
  2005年   51篇
  2004年   50篇
  2003年   39篇
  2002年   51篇
  2001年   15篇
  2000年   17篇
  1999年   20篇
  1998年   15篇
  1997年   10篇
  1995年   5篇
  1994年   14篇
  1993年   8篇
  1992年   15篇
  1991年   17篇
  1990年   21篇
  1989年   17篇
  1988年   12篇
  1987年   16篇
  1986年   23篇
  1985年   21篇
  1984年   15篇
  1983年   15篇
  1982年   22篇
  1981年   10篇
  1980年   18篇
  1979年   11篇
  1978年   7篇
  1977年   10篇
  1975年   6篇
  1974年   8篇
  1972年   5篇
  1971年   6篇
  1968年   6篇
  1967年   6篇
  1966年   4篇
  1965年   3篇
排序方式: 共有1013条查询结果,搜索用时 15 毫秒
81.
Rosemary is commonly used as a spice and a flavoring agent in food processing. Although the antioxidative properties of its extracts have been investigated, there have been few reports on the volatile components of rosemary. We designed a novel antioxidative system which can generate the volatile constituents in the gaseous phase from a rosemary extract and evaluated the gaseous antioxidative activities against both lipid peroxidation and cell death induced by nitrogen dioxide and ultraviolet radiation. The antioxidative effects of the major volatile components on the oxidation of linoleic acid induced by azo compounds were also investigated in a solution. The volatile components in the novel antioxidative system suppressed the Jurkat cell death induced by nitrogen dioxide and the intracellular formation of reactive oxygen species in fibroblast cells induced by ultraviolet radiation. 1,8-Cineole among the volatile components exerted an antioxidative effect against the oxidation of linoleic acid in a solution induced by azo compounds and ultraviolet radiation. These data suggest that the volatile constituents of a rosemary extract had antioxidative properties and that gaseous exposure antioxidant is a promising method for promoting health.  相似文献   
82.
The primary amino groups of biomolecules such as aminophospholipids, as well as proteins, are the potential targets of covalent modifications by lipid peroxidation products; however, little attention has been paid to the modification of aminophospholipids such as phosphatidylethanolamine (PE). The purpose of this study is to characterize the formation of a novel modified phospholipid, N-(hexanoyl)phosphatidylethanolamine (HEPE), in the reaction of PE with lipid hydroperoxides using mass spectrometric analyses. Upon reaction of egg PE with 13-hydroperoxyoctadecadienoic acid or other oxidized polyunsaturated fatty acids followed by phospholipase D-mediated hydrolysis, the formation of N-(hexanoyl)ethanolamine (HEEA), a head group of HEPE, was confirmed by isotope dilution liquid chromatography/tandem mass spectrometry. Moreover, increasing HEEA was detected in the hydrolysates of oxidized erythrocyte ghosts and low-density lipoprotein with their increasing lipid peroxidation levels. Collectively, these results suggest that the N-hexanoylated product of phospholipid, HEPE, can be generated during lipid peroxidation and may serve as one mechanism for the covalent modification of aminophospholipids in vivo.  相似文献   
83.
84.
Oligoamines (spermidine, dipropylenetriamine and propylenediamine) were covalently attached to acridine via a hexamethylene linker. These oligoamine–acridine conjugates were efficiently bound to gap sites in substrate DNA, and promoted the DNA hydrolysis by a homogeneous Ce(IV)/ethylenediamine-N,N,N′,N′-tetraacetate (EDTA) complex at these sites. In contrast, the hydrolysis of the double-stranded portion in the DNA was little affected by these conjugates, although they were strongly bound thereto by the intercalation of their acridine moieties. As a result, the gap site was selectively and efficiently hydrolyzed by combining the Ce(IV)/EDTA complex with the oligoamine– acridine conjugate. Either the oligoamine or the acridine was only poorly active for the purpose, substantiating the essential role of cooperation between them. The promotion of gap-selective DNA hydrolysis by the conjugates has been ascribed to electrostatic stabilization of a negatively charged transition state by their positive charges.  相似文献   
85.
The objective of this study was to develop an assay system that allows continuous monitoring of nitric oxide (NO) released from crystalloid perfused hearts. We utilized chemiluminescence reaction between NO and luminol-H(2)O(2) to quantify the NO level in coronary effluent. Isolated rat hearts were subjected to ordinary Langendorff's perfusion, and the right ventricle was cannulated to sample coronary effluent. After equilibration, the coronary flow rate was set constant and the hearts were paced at 300 bpm. Coronary effluent was continuously sampled and mixed with the chemiluminescent probe containing 0.018 mmol/l luminol plus 10 mmol/l H(2)O(2). Chemiluminescence from the mixture of coronary effluent and the probe was continuously measured. NO concentration was calibrated by various concentrations (0.5-400 pmol/l) of standard NO solution. The lower detection limit of NO was 1 pmol/l. Basal NO release from isolated perfused rat heart was 0.41 +/- 0.17 pmol/min/g of heart weight, and that was significantly suppressed by 0.1 mmol/l of L-NAME to 0.18 +/- 0.10 pmol/min/g of heart weight (n = 7). Application of 0.1 and 0.3 micromol/l acetylcholine increased NO level in the coronary effluent, in a concentration-dependent manner, from 6.6 +/- 1.7 in a baseline condition to 16.3 +/- 7.4 and 30.3 +/- 16.1 pmol/l at each peak, respectively. Thrombin at 1 and 10 U/ml also increased NO level from 17.6 +/- 4.3 in control to 35.5 +/- 10.4 and 48.7 +/- 8.7 pmol/l at each peak, respectively (n = 7). Thus, this assay system is applicable to the continuous real-time measurement of NO released from crystalloid perfused hearts, and it may be useful for the study of physiological or pathophysiological role of NO in coronary circulation.  相似文献   
86.
Suicide gene expression in specific tissue of transgenic animals has been used for cell-specific ablation. To examine the influence of hepatocyte removal, we produced the herpes simplex virus thymidine kinase (HSVtk) transgenic rat, whose gene was regulated by an albumin enhancer promoter. The liver presence of HSVtk was demonstrated in one line of the transgenic rats. We injected ganciclovir (GCV, 50mg/kg) into the rat on alternate days. After 28 days of GCV administration, liver tissues, and blood of the rats were collected. The histological investigation revealed infiltration of T cells, macrophages, granulocytes/neutrophils, and hepatocyte cell death. The biochemistry analysis demonstrated elevated levels of AST, ALT, and total bilirubin in transgenic rat. In conclusion, the transgenic rat with expressed albumin-specific HSVtk developed experimental hepatitis with administration of GCV, and will be a useful model to facilitate the evaluation of drug effects for clinical control of liver disease.  相似文献   
87.
Because serum albumin is specifically produced by mature hepatocytes, detection system of albumin producing cells could be a valuable tool to visualize liver regeneration or development. We have developed here an albumin enhancer/promoter-driven Alb-DsRed2 Tg rat that expresses DsRed2, having liver-specific reporter gene expression of red fluorescent protein. To study the transdifferentiation of bone marrow cells (BMCs) into albumin producing cells, BMCs from the Alb-DsRed2 Tg rat were injected into rats having acute liver damage caused by 2-acetylaminofluorene plus carbon tetrachloride and chronic liver damage by repeated administration of CCl(4). DsRed2-positive cells were generated in the recipient liver after BMC injection. The number of transdifferentiated DsRed2-positive cells in chronic liver injury model was increased comparing with that in acute injury model. We propose that the Alb-DsRed2 Tg rat is well suited to studying in vivo liver regeneration.  相似文献   
88.
89.
WEHI164S cells were found to be very sensitive targets for in vitro killing in a 6-h culture when liver or splenic lymphocytes were used as effector cells in mice. Of particular interest, a limiting cell-dilution analysis showed that effector cells were present in the liver with a high frequency (1/4,300). In contrast to YAC-1 cells as NK targets, perforin-based cytotoxicity was not highly associated with WEHI164S killing. The major killer mechanism for WEHI164S targets was TNFalpha-mediated cytotoxicity. By cell sorting experiments, both NK cells and intermediate T cells (i.e., TCR(int) cells) were found to contain effector cells against WEHI164S cells. However, the killer mechanisms underlying these effector cells were different. Namely, NK cells killed WEHI164S cells by perforin-based cytotoxicity, TNFalpha-mediated cytotoxicity, Fas ligand cytotoxicity, and other mechanisms, whereas intermediate T cells did so mainly by TNFalpha-mediated cytotoxicity. These results suggest that TNFalpha-mediated cytotoxicity mediated by so-called natural cytotoxic (NC) cells comprised events which were performed by both NK and intermediate T cells using somewhat different killer mechanisms. Intermediate T cells which were present in the liver were able to produce TNFalpha if there was appropriate stimulation.  相似文献   
90.
Sulfite is a major air pollutant which can cause respiratory tract inflammation characterized by an influx of polymorphonuclear neutrophils (PMN). We have previously shown that human PMN can produce sulfite either spontaneously or in response to stimulation with lipopolysaccharide. We now demonstrate that sulfite activates PMN to adhere to immobilized fibrinogen via the beta2-integrin Mac-1 (CD11b/CD18). Mac-1 expression is not altered by treatment with this agent. Although unaffected by pertussis toxin, sulfite-triggered PMN adhesion was abrogated by pretreating cells with the membrane-impermeant sulfhydryl reagent 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), a modifier of thiol groups on the cell surface. These results suggest that sulfite-induced PMN adhesion is dependent on a modification of thiols at the cell surface. Given its potent antioxidant and antimicrobial activities, sulfite may act as an endogenous mediator in host defense and/or inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号